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ABSTRACT 

The control charting technique is an approach to quality control and was implemented in 
various industries. There are many control charts, where the coefficient of variation control 
chart was one of the common charts and greatly used in Statistical Process Control. Since 
most processes are multivariate, the multivariate coefficient of variation charts has received 
great attention in the past few years. However, the existing multivariate coefficient of 
variation control charts was evaluated in terms of the average run length criterion, which 
may misinterpret the actual performance of the charts. This paper designs an alternative 
for the Shewhart multivariate coefficient of variation chart by considering the median run 
length and expected median run-length criteria to circumvent this problem. The research 
on the multivariate coefficient of variation chart is very limited in the existing literature by 
considering the median run length criterion. This proposed chart in this paper can minimize 
this research gap. The formulas and algorithms of the proposed chart are presented. The 
outputs of the proposed charts are shown by examining the different upward and downward 
process shifts. Additionally, the sample sizes, the process shifts, and the variation of the 
run-length distribution are investigated for their effects on the proposed chart. The findings 

reveal that the run-length distribution’s 
variation is inversely proportional to the 
shift size. Furthermore, it shows that the 
variation decreases if the shift size increases.  
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INTRODUCTION

The control chart is frequently used in Statistical Process Control for detecting the processed 
signal. Implementing the control chart aims to improve the quality of processes in various 
domains such as healthcare, manufacturing, and service (Mim et al., 2019). The traditional 
control chart was used to monitor the process location and dispersion. Note that the process 
mean needs to be constant, and the process standard deviation is not correlated to the mean 
(Khaw & Chew, 2019). Shewhart was proposed to monitor the process mean, while 
R and S charts are commonly used for process variability. In the past two decades, the 
coefficient of variation (CV) chart has been widely applied in different domains, where the 
most common domains are manufacturing, healthcare, finance, and service. The CV can be 
defined as the ratio of the standard deviation to the mean, and it can be used when the mean 
and standard deviation of the data are highly correlated. For example, Chanda et al. (2018) 
investigated the CV obtained from Vegetarian Indices with the millable stalk of sugarcane 
varieties and plant population. Huang and Tang (2007) proposed a new infrared device for 
the CV in yarns. Shriberg et al. (2003) used the CV as a diagnostic marker for childhood 
apraxia of speech, while Alharbi et al. (2019) combined the CV and normalized-difference 
vegetative index to predict the plant populations in corn. The CV of the endothelial cell 
area was examined by Doughty and Aakre (2008). The CV is also recently applied in the 
chemical reactor process (Mahmood & Abbasi, 2021) and continuous glucose monitoring 
(Mo et al., 2021), respectively. 

Kang et al. (2007) were the first researchers to develop the Shewhart CV chart. It could 
be applied for monitoring the process in which the traditional and R charts could not 
function well. Most traditional charts focus on monitoring the process’s mean or standard 
deviation. However, in some processes, such as the healthcare process, the mean and the 
standard deviation are not independent, where the mean is not constant and/or the standard 
deviation is a function of the mean. In such processes, the use of traditional charts is dubious. 
In these conditions, it is better to monitor the CV. Over the years, many intermediate and 
advanced CV charts have been discussed by using different strategies, such as exponentially 
weighted moving average (EWMA) (Zhang et al., 2014; Castagliola et al., 2011), CUSUM 
(Tran & Tran, 2016), synthetic (Calzada & Scariano, 2013; Chew et al., 2021), run rules 
(Castagliola et al., 2013), adaptive schemes (Khaw et al., 2017; Castagliola et al., 2015; 
Yeong et al., 2018) and variable sample size run sum (Yeong et al., 2022). Those proposed 
charts provided better performance in detecting small and moderate shifts. However, at 
the same time, the computational difficulties and costs increased. 

All preceding charts are used for monitoring the univariate process. In real-life 
applications, most process monitoring is in multivariate conditions, containing at least two 
quality characteristics. Yeong et al. (2016) introduced a CV chart in a multivariate case 
called a multivariate coefficient of variation (MCV). The proposed chart only performs 
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well when detecting large process shifts. Khaw et al. (2019) and Chew et al. (2020) 
proposed a synthetic MCV and run rules MCV charts to improve the detection of small and 
moderate shifts. The results show that the synthetic MCV chart outperformed the Shewhart 
MCV and run rules MCV charts for detecting small and moderate MCV shifts. However, 
the drawback of the synthetic MCV chart is its weak efficiency in detecting downward 
shifts. The adaptive schemes were incorporated into the Shewhart MCV chart to improve 
performance. Those are variable sampling interval MCV (Nguyen et al., 2019), variable 
sample size MCV (Khaw et al., 2021), variable sample size and sampling interval MCV 
(Khaw et al., 2018), and variable parameter MCV charts (Chew et al., 2019). Comparing 
those adaptive charts reveals that the variable parameter MCV chart provides the best 
performance detecting small to large shifts in different shift sizes and ranges. More recently, 
Giner-Bosch et al. (2019) recommended the MCV-squared EWMA chart. More recently, 
Adegoke et al. (2022) suggested an MCV chart for high-dimensional processes, while Ng 
et al. (2022) investigated the MCV chart in terms of economic criterion.	

To date, the design of the existing MCV charts is based on the average run length (ARL) 
criterion. According to Khoo et al. (2012), the ARL performance measure should not be 
the only measure as it could potentially cause the chart’s misinterpretation. In addition, 
the ARL performance measure may not be practically effective due to the inconsistency 
and excessive variations of the run-length distribution (Zhou et al., 2012). Zhou et al. 
(2012) stated that the run-length distribution’s percentile effectively summarizes the run-
length behavior and provides more information on the control chart. Therefore, the 50th 
percentile, also called median run length (MRL), is considered more practical in designing 
the control chart.

In contrast, the fifth (5%) and 95th (95%) percentiles can be used with the MRL for 
investigating the skewness and spread of the run-length distribution (Chakraborti, 2007). 
Some of the research works on control charts could be found using MRL. For example, 
Teoh et al. (2017) proposed a variable sample size chart for monitoring the process mean 
based on the MRL criterion. The results revealed that the proposed chart performed better 
than the Shewhart chart. This study is then adopted by Lim et al. (2019) for recommending 
a variable sample size univariate CV chart. The distribution of CV is investigated in this 
study. Yeong et al. (2021) recently adopted the side-sensitive synthetic scheme to the CV 
chart. The proposed chart is more sensitive than the variable sample size CV chart detecting 
small and moderate CV shifts. With the salient properties of the MRL performance measure, 
this paper proposes two one-sided Shewhart MCV charts based on the MRL and expected 
median run length (EMRL). MRL is the median number of samples (subgroups) that must 
be plotted on a chart until it produces the first out-of-control signal (Montgomery, 2013). 
MRL could be used as a performance measure in detecting the shift size τ, whereas the 
EMRL is used for detecting the shift range.
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In the current literature, the research on MCV charts based on MRL is very limited. 
Therefore, only the synthetic MCV chart of Lee et al. (2020) based on MRL is introduced. 
Although the advanced chart, the synthetic MCV chart, performed better than the Shewhart 
MCV chart, this proposed chart can be used by the practitioner who likes to implement 
an intermediate-type chart in the process monitoring. This intermediate framework is 
simple yet effective in terms of costs and time. However, the synthetic MCV chart was 
not investigated in terms of EMRL, which is required to be used when the exact shift size 
could not be defined in certain processes. Additionally, the synthetic chart is ineffective 
in detecting the downward process shifts. The downward process shifts are crucial since 
it shows process improvement. The proposed chart circumvents these drawbacks as it has 
been developed and can effectively detect the upward and downward process shifts in the 
MRL and EMRL criteria. Figure 1 illustrates the graphical view of the proposed upward 
and downward charts. This paper’s organization is shown as follows: The properties and 
distribution of the Shewhart MCV chart are discussed in Methods. Methods also enumerated 
the formulas and algorithms of MRL and EMRL. Then, the outputs of the proposed chart are 
shown in the Results and Discussion. Lastly, the concluding remarks and recommendations 
will be presented in Conclusion.

Figure 1. Graphical view of the Shewhart MCV charts
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METHODS

According to Voinov and Nikulin (1996), suppose that we have a random sample size 
of a, i.e., X1, X2, ..., Xa from a b-variate normal distribution with a mean vector µ and 
covariance matrix ∑, it gives X ~ Nb (µ, ∑), where , for 1 ≤ i ≤ 
a and .  The MCV statistic for the population can be denoted as 

. The sample MCV can assume γ,  if µ and ∑ are unknown. Thus,   
can be obtained by substituting µ and ∑ to and S. Note that is the 

sample mean vector while S is the sample covariance matrix. The and S are defined as 
and ,, respectively. Here, and S are 

not correlated. 
Based on Wijsman’s theorem (1957), Yeong et al. (2016) gave distribution. is 

normally distributed with mean µ and covariance matrix , i.e., . 
At the same time, S has a Wishart distribution with (a – 1) degree of freedom and 
covariance matrix (1/(1 - a))∑, which gives . By letting 

, it provides , which can be defined as 
a noncentral F distribution. Here, a refers to sample size, and b is the number of quality 
characteristics. Note that it is with b and a – b degrees of freedom and noncentrality 
parameter . From , it can be further derived as  by 
adding a to both sides. By adopting, it gives Equation 1

.

					   
										          [1]

Since  and it can also be formulated as , where  is the MCV, as 
mentioned in the early paragraph. The cumulative distribution function (CDF) of can 
be derived as Equation 2

	
							     

  										          [2]

where FF  ( · | a, a – b, δ) is the noncentral F distribution. Note that it is with b and a – b 
degrees of freedom and noncentrality parameter δ. 

To formulate the inverse CDF of , Yeong et al. (2016) let gives 
. Then, Equation 3 gives

										          [3]
.
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Then, it gives Equation 4

.
					   

										          [4]

With some algebraic manipulations, it provides Equation 5 as follows:

,
					   

										          [5]

Since ,  then the inverse CDF of can be derived in Equation 6

,
				  

										          [6]

where FF  ( · | a, a – b, δ) is the inverse CDF of the noncentral F distribution. Note that 
it is with b and a – b degrees of freedom and noncentrality parameter δ. The distribution 
of  is only considered true when b < a due to the positive degree of freedom. Next, 

as mentioned in the early paragraph, it is equivalent to , 
where the shift size τ = 1 in the in-control process and γ1 = τγ0 is an out-of-control MCV 
when τ ≠ 1. When τ ≠ 1, the values of τ > 1and 0 < τ < 1 are for an increase and decrease 
MCV shifts, respectively.

According to Yeong et al. (2016), the root mean square method can be applied when 
the in-control sample MCV, i.e., , is unknown. Then, the formula can be obtained as 
Equation 7:

,
								      

										          [7]

where m is the number of in-control Phase I samples. The two one-sided Shewhart MCV 
charts consist of two independent charts: the upward Shewhart MCV chart for detecting the 
increase of the process MCV shifts and the downward Shewhart MCV chart for detecting 
the decrease of the process MCV shifts. The upward chart has an upper control limit 
(UCL), while the downward chart has a lower control limit (LCL). The chart will detect 
an out-of-control signal if the sample MCV falls beyond the LCL and UCL. Therefore, 
the practitioner needs to identify the assignable cause(s) immediately to bring the process 
back to normal. By setting the Type I error probability (α), the UCL and LCL’s formulas 
are shown in Equations 8 and 9.

, 						      [8]

for the increasing case and

, 						      [9]
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for the decreasing case. Note that  and . The ARL0 is the in-
control ARL value, where the ARL0 value is specified by the practitioner, depending on 
the current process system. For example, if the ARL0 is set as 370, then the α value will 
be computed as α = 1/370 = 0.0027.

As mentioned above, the process is out-of-control when the sample falls above the 
UCL of the upward Shewhart MCV chart and below the LCL of the downward Shewhart 
MCV chart. Thus, the probabilities that the upward and downward Shewhart MCV charts 
for detecting an out-of-control signal are and ,
respectively. Subsequently, the ARL and expected ARL (EARL) are shown in Equations 
10 and 11:

								        [10]

and 

					    [11]

where ARL1 is an out-of-control ARL and fτ(τ) denotes the probability density function 
(PDF) of τ. According to Yeong et al. (2016), the EARL is a better performance measure 
for the case when τ unable to be specified by the practitioner. In the interval (τmaxmin), the  
τmin is the lower bound of τ, whereas the τmax is the upper bound of τ, subject to τmaxmin.

The limits of the charts are known constants if the plotted statistics are independent 
(Montgomery, 2013). Thus, the probability mass function (PMF), that is, fRL(l) and CDF, 
that is, fRL(l) of the run length (RL) for the Shewhart MCV chart, can be obtained as fRL(l) 
= P(RL = l) = α(1 - α)l-1 and ,  respectively, where l ϵ 
{1,2,3, ... }. According to Gan (1993), the (100θ)th percentile of the run-length distribution 
can be denoted as the value lθ  such as in Equation 12

P (RL ≤ lθ - 1) ≤ θ and P(RL ≤ lθ) > θ. .					     [12]

where 0 < θ < 1. Then, the percentiles of the run-length distribution of the upward and 
downward Shewhart MCV charts can be computed such that MRL, by setting θ = 0.5 
in Equation (12), that is, P(RL ≤ MRL - 1) ≤ 0.5 and P(RL ≤ MRL) > 0.5. Note that the 
practitioner can specify the in-control MRL (MRL0) based on the current process system. 
When the shift size τ is unknown, the EMRL can be used as the performance measure. For 
the computation of EMRL, the formula is shown in Equation 13

						    
										          [13]

where the in-control EMRL (EMRL0) is equal to the MRL0 and fτ(τ) is the PDF of τ.  
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RESULTS AND DISCUSSION

Tables 1, 2, and 3 present the  values for the upward and downward 
Shewhart MCV charts for monitoring the upward and downward MCV shifts, respectively, 
when b ϵ{2, 3, 4}, a ϵ{5, 10, 15}, γ0 ϵ{0.1, 0.5}, τ ϵ{1.1, 1.2, 1.3, 1.4, 1.5} (for the upward 
case) and τ ϵ{0.5, 0.6, 0.7, 0.8, 0.9} (for the downward case) and the MRL0 value is specified 
as 250 (when τ = 1.0). Note that the values of sample size a and the quality characteristics 
b were adopted from Yeong et al. (2016) and Khatun et al. (2019). The spread and variation 
of the run-length distribution can be measured by referring to the difference of the values 
between and , where  and are the 5th and 95th percentiles of the 
run-length distribution, respectively. The results reveal that the larger shift τ gives smaller   

values with any change of the b, , and n values. For example, in 
Table 1, for b = 2,  = 0.1 and a = 10, the MRL1 ϵ{(6, 81, 347), (2, 18, 76), (1, 7, 30)} 
when upward shift τ ϵ{1.1, 1.3, 1.5} whereas the MRL1 ϵ{(15, 190, 820), (8, 97, 417), (3, 
38, 163)} when downward shift τ ϵ{0.9, 0.7, 0.5}. 

The run-length distribution’s variation is inversely proportional to the shift size. It 
shows that the variation decreases if the shift size increases. One of the examples is shown 
in Table 2; for b = 3, = 0.5, and a = 5, the different values between  and 
are (454, 143, 69) when τ ϵ{1.1, 1.3, 1.5} (for upward shift) and (887, 557, 296) when τ 
ϵ{0.9, 0.7,0.5} (for downward shift). The values have a minimal 
decrease trend for detecting the downward shift with a small sample size value, a = 5. For 
example, in Table 3, for b = 4,  = 0.1, and a = 5, the decreased percentage of the MRL1 
value from τ = 0.9 to τ = 0.5 is 46% while the decreased percentages when a = 10 and 
15 are 92% and 98%, respectively. Generally, the values increase 
when b and  values increase. An example is presented in Tables 1, 2, and 3, for b ϵ{2, 
3, 4}, a = 5 and τ = 1.1, the MRL1 ϵ{(81, 97), (91, 107), (107, 123)}, when {0.1, 0.5} .

In terms of the EMRL1 criterion, Tables 4, 5, and 6 present the values for the upward 
and downward Shewhart MCV charts, for monitoring the upward and downward MCV 
shift ranges, respectively, when b ϵ{2, 3, 4}, a ϵ{5, 10, 15}, {0.1, 0.5} , (τmaxminϵ){(1.0, 
2.0), (1.3, 2.0), (1.5, 2.0)} (for the upward case) and (τmaxmin ϵ){(0.3, 1.0), (0.5, 1.0), (0.7, 
1.0)} (for the downward case) and the EMRL0 value is set equal to the MRL0 value, that is 
250. Generally, the detected trend on the effect of b, a, and  values is nothing different 
from the case of MRL1. However, it shows that the run-length distribution’s variation for 
the downward shift ranges is larger than the run-length distribution’s, regardless of the b, 

, and a values. For instance, in Table 4, when b = 2, a = 5, and , the run-length 
distribution’s variation of the downward shift range (τmaxmin=) (0.5, 1.0) is 531.23 while 
the upward shift range (τmaxmin =) (1.0, 2.0) is 111.12. Note that the shift ranges (0.5, 1.0) 
and (1.0, 2.0) are considered very practical in the real industry (Castagliola et al., 2011).



Pertanika J. Sci. & Technol. 31 (1): 615 - 632 (2023) 623

Alternative Design of One-Sided Shewhart MCV Charts

Table 1
values of the two one-sided Shewhart MCV charts, for the case b = 2, a ϵ{5, 10, 15}, 

{0.1, 0.5} , τ ϵ{0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5} and MRL0 = 250

τ γ0 = 0.1 γ0 = 0.5
a = 5

0.5 3, 38, 163 3, 38, 164
0.6 5, 63, 273 5, 63, 272
0.7 8, 97, 417 8, 97, 416
0.8 11, 140, 602 11, 138, 597
0.9 15, 190, 820 15, 191, 825
1.1 6, 81, 347 8, 97, 418
1.2 3, 35, 148 4, 48, 204
1.3 2, 18, 76 2, 27, 117
1.4 1, 11, 45 2, 18, 75
1.5 1, 7, 30 1, 13, 53

a = 10
0.5 1, 5, 18 1, 5, 20
0.6 1, 12, 50 1, 13, 53
0.7 3, 29, 126 3, 30, 129
0.8 5, 67, 287 5, 66, 284
0.9 10, 135, 583 10, 134, 576
1.1 5, 55, 237 6, 71, 307
1.2 2, 19, 79 3, 29, 122
1.3 1, 9, 35 2, 14, 61
1.4 1, 5, 19 1, 9, 36
1.5 1, 3, 12 1, 6, 23

a = 15
0.5 1, 2, 6 1, 2, 7
0.6 1, 5, 18 1, 5, 20
0.7 1, 14, 58 1, 14, 59
0.8 4, 41, 177 3, 39, 168
0.9 9, 113, 489 8, 103, 445
1.1 4, 43, 183 5, 58, 248
1.2 1, 13, 53 2, 20, 87
1.3 1, 5, 22 1, 10, 40
1.4 1, 3, 12 1, 6, 22
1.5 1, 2, 7 1, 4, 14
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Table 2 
values of the two one-sided Shewhart MCV charts, for the case b = 3, a ϵ{5, 10, 15}, 

{0.1, 0.5} , τ ϵ{0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5} and MRL0 = 250

τ γ0 = 0.1 γ0 = 0.5
a = 5

0.5 6, 69, 297 6, 70, 301
0.6 8, 98, 422 8, 99, 426
0.7 10, 131, 563 10, 132, 567
0.8 13, 168, 724 13, 168, 723
0.9 16, 207, 891 16, 209, 903
1.1 7, 91, 391 8, 107, 462
1.2 4, 42, 180 5, 56, 242
1.3 2, 23, 98 3, 34, 146
1.4 2, 14, 60 2, 23, 98
1.5 1, 10, 41 2, 17, 71

a = 10
0.5 1, 6, 26 1, 7, 28
0.6 2, 16, 67 2, 17, 70
0.7 3, 36, 156 3, 37, 158
0.8 6, 76, 329 6, 76, 325
0.9 11, 144, 620 11, 143, 614
1.1 5, 59, 252 6, 75, 324
1.2 2, 21, 88 3, 31, 134
1.3 1, 10, 40 2, 16, 68
1.4 1, 5, 22 1, 10, 41
1.5 1, 4, 14 1, 7, 27

a = 15
0.5 1, 2, 7 1, 2, 8
0.6 1, 5, 22 1, 6, 23
0.7 2, 16, 68 2, 16, 68
0.8 4, 46, 197 4, 43, 186
0.9 9, 119, 513 8, 109, 468
1.1 4, 45, 192 5, 60, 258
1.2 1, 14, 57 2, 22, 93
1.3 1, 6, 24 1, 10, 43
1.4 1, 3, 13 1, 6, 24
1.5 1, 2, 8 1, 4, 16
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Table 3
values of the two one-sided Shewhart MCV charts, for the case b = 4, a ϵ{5, 10, 15}, 

{0.1, 0.5} , τ ϵ{0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5} and MRL0 = 250

τ γ0 = 0.1 γ0 = 0.5
a = 5

0.5 9, 122, 526 10, 131, 564
0.6 12, 149, 644 12, 156, 673
0.7 13, 175, 754 14, 180, 778
0.8 15, 201, 868 16, 204, 878
0.9 17, 225, 970 17, 229, 990
1.1 8, 107, 461 10, 123, 530
1.2 5, 55, 238 6, 71, 306
1.3 3, 33, 141 4, 46, 199
1.4 2, 22, 92 3, 33, 141
1.5 2, 15, 65 2, 25, 106

a = 10
0.5 1, 9, 38 1, 10, 41
0.6 2, 22, 92 2, 22, 95
0.7 4, 46, 197 4, 46, 197
0.8 7, 88, 380 7, 87, 375
0.9 12, 153, 661 12, 153, 658
1.1 5, 63, 270 6, 80, 334
1.2 2, 23, 98 3, 34, 147
1.3 1, 11, 46 2, 18, 77
1.4 1, 6, 25 1, 11, 47
1.5 1, 4, 16 1, 8, 31

a = 15
0.5 1, 2, 9 1, 3, 10
0.6 1, 7, 27 1, 7, 28
0.7 2, 19, 80 2, 19, 79
0.8 4, 51, 220 4, 48, 206
0.9 10, 125, 539 9, 114, 493
1.1 4, 47, 202 5, 63, 270
1.2 2, 15, 62 2, 23, 99
1.3 1, 6, 26 1, 11, 47
1.4 1, 4, 14 1, 7, 27
1.5 1, 2, 9 1, 4, 17
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Table 4 
values of the two one-sided Shewhart MCV charts, for the case b = 2, a ϵ{5, 10, 15}, 

{0.1, 0.5} , (τmaxmin ϵ) {(0.3, 1.0), (0.5, 1.0), (0.7, 1.0), (1.0, 2.0), (1.3, 2.0), (1.5, 2.0)} and EMRL0 = 250

(τmaxmin) γ0 = 0.1 γ0 = 0.5
a = 5

(0.3, 1.0) 7.61, 96.57, 420.90 7.61, 96.47, 420.32
(0.5, 1.0) 9.84, 125.68, 541.07 8.84, 125.98, 542.66
(0.7, 1.0) 12.95, 167.40, 722.03 12.82, 166.73, 719.32
(1.0, 2.0) 2.60, 26.65, 113.72 2.93, 33.61, 143.56
(1.3, 2.0) 1.05, 6.25, 24.71 1.25, 10.46, 43.83
(1.5, 2.0) 1.00, 4.07, 15.63 1.00, 7.32, 30.12

a = 10
(0.3, 1.0) 4.47, 52.60, 238.93 4.38, 52.37, 237.85
(0.5, 1.0) 5.81, 71.77, 317.32 5.72, 71.39, 315.63
(0.7, 1.0) 8.67, 111.06, 477.52 8.57, 109.71, 471.99
(1.0, 2.0) 2.08, 18.74, 79.92 2.34, 23.86, 101.57
(1.3, 2.0) 1.00, 2.69, 10.29 1.01, 5.10, 19.70
(1.5, 2.0) 1.00, 1.82, 5.99 1.00, 3.31, 12.41

a = 15
(0.3, 1.0) 3.70, 42.01, 193.12 3.48, 39.80, 182.16
(0.5, 1.0) 4.68, 56.88, 256.35 4.47, 54.46, 244.51
(0.7, 1.0) 7.17, 91.05, 393.88 6.83, 86.27, 372.57
(1.0, 2.0) 1.85, 15.67, 66.01 2.12, 19.84, 83.54
(1.3, 2.0) 1.00, 1.77, 6.20 1.00, 3.21, 12.36
(1.5, 2.0) 1.00, 1.25, 3.75 1.00, 2.13, 7.64
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Table 5 
values of the two one-sided Shewhart MCV charts, for the case b = 3, a ϵ{5, 10, 15}, 

{0.1, 0.5} , (τmaxmin ϵ) {(0.3, 1.0), (0.5, 1.0), (0.7, 1.0), (1.0, 2.0), (1.3, 2.0), (1.5, 2.0)} and EMRL0 = 250

(τmaxmin) γ0 = 0.1 γ0 = 0.5
a = 5

(0.3, 1.0) 9.57, 122.04, 526.11 9.57, 122.81, 529.84
(0.5, 1.0) 11.72, 151.33, 652.63 11.85, 153.24, 659.99
(0.7, 1.0) 14.25, 188.35, 812.95 14.35, 188.89, 814.78
(1.0, 2.0) 2.78, 30.46, 130.06 3.25, 38.65, 165.16
(1.3, 2.0) 1.17, 8.27, 33.69 1.40, 14.05, 59.10
(1.5, 2.0) 1.00, 5.54, 22.12 1.10, 10.22, 42.25

a = 10
(0.3, 1.0) 4.66, 57.12, 258.07 4.68, 57.01, 257.60
(0.5, 1.0) 6.11, 77.91, 342.67 6.05, 77.82, 340.83
(0.7, 1.0) 9.26, 118.66, 510.99 9.19, 117.31, 505.26
(1.0, 2.0) 2.12, 19.85, 84.13 2.52, 25.27, 107.39
(1.3, 2.0) 1.00, 3.05, 11.78 1.05, 5.54, 22.74
(1.5, 2.0) 1.00, 2.01, 7.05 1.00, 3.72, 14.60

a = 15
(0.3, 1.0) 3.74, 43.97, 202.12 3.63, 41.67, 190.67
(0.5, 1.0) 4.98, 59.72, 268.37 4.76, 57.07, 255.77
(0.7, 1.0) 7.55, 94.95, 410.73 7.08, 90.09, 388.48
(1.0, 2.0) 1.88, 16.11, 68.18 2.12, 20.37, 86.76
(1.3, 2.0) 1.00, 1.87, 6.89 1.00, 3.59, 13.45
(1.5, 2.0) 1.00, 1.25, 4.09 1.00, 2.43, 8.33
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CONCLUSION 

No attempt has been made to investigate the Shewhart MCV chart based on MRL and 
EMRL in the current literature. This paper proposes the two one-sided Shewhart MCV 
charts for monitoring the upward and downward MCV shifts and shift ranges based on 
MRL and EMRL. In the existing literature, the ARL performance measure should not 
be the only measure as it could potentially cause the chart’s misinterpretation. The ARL 
performance measure may not be practically effective due to the inconsistency and excessive 
variations of the run-length distribution. It shows the importance of this study, in which 
the proposed charts can circumvent the drawbacks of using ARL, and at the same time, the 
biased performance of the two-sided MCV chart can be resolved. Additionally, the proposed 

Table 6 
values of the two one-sided Shewhart MCV charts, for the case b = 4, a ϵ{5, 10, 15}, {0.1, 0.5} , (τmaxmin 
ϵ){(0.3, 1.0), (0.5, 1.0), (0.7, 1.0), (1.0, 2.0), (1.3, 2.0), (1.5, 2.0)} and EMRL0 = 250

(τmaxmin) γ0 = 0.1 γ0 = 0.5
a = 5

(0.3, 1.0) 12.44, 161.48, 696.08 12.83, 167.38, 722.30
(0.5, 1.0) 14.12, 185.83, 801.75 14.74, 191.94, 827.81
(0.7, 1.0) 16.23, 213.75, 922.54 16.45, 216.25, 932.47
(1.0, 2.0) 3.25, 37.64, 160.67 3.96, 47.56, 203.77
(1.3, 2.0) 1.40, 12.81, 53.86 2.05, 21.11, 89.67
(1.5, 2.0) 1.05, 8.93, 37.05 1.64, 15.95, 67.71

a = 10
(0.3, 1.0) 5.16, 63.13, 283.50 5.08, 63.04, 282.84
(0.5, 1.0) 6.88, 85.88, 374.46 6.76, 85.79, 372.81
(0.7, 1.0) 9.94, 128.07, 550.78 9.94, 126.53, 545.17
(1.0, 2.0) 2.24, 20.90, 89.15 2.59, 26.81, 114.32
(1.3, 2.0) 1.00, 3.60, 13.74 1.05, 6.39, 26.29
(1.5, 2.0) 1.00, 2.35, 8.24 1.00, 4.37, 17.33

a = 15
(0.3, 1.0) 3.95, 46.27, 212.28 3.78, 43.92, 200.62
(0.5, 1.0) 5.08, 62.89, 281.90 4.88, 60.08, 268.82
(0.7, 1.0) 7.84, 99.56, 429.86 7.62, 94.44, 406.90
(1.0, 2.0) 1.95, 16.70, 70.83 2.24, 21.30, 90.03
(1.3, 2.0) 1.00, 2.13, 7.40 1.00, 3.72, 14.80
(1.5, 2.0) 1.00, 1.35, 4.49 1.00, 2.62, 9.16



Pertanika J. Sci. & Technol. 31 (1): 615 - 632 (2023) 629

Alternative Design of One-Sided Shewhart MCV Charts

charts can be used by the practitioner who likes to implement an intermediate-type chart 
in the process monitoring. This intermediate framework is simple yet effective in terms of 
costs and time. The proposed charts provided the results based on the MRL1 and EMRL1 
criteria. The variation and spread of the run-length distribution are discussed by referring 
to the run-length distribution’s 5th and 95th percentiles. The effects of different parameter 
combinations on the proposed chart’s performance are the sample size a, the number of 
quality characteristics b, the in-control MCV value γ0 , the MCV shifts (for MRL), and the 
MCV shift ranges (for EMRL) are investigated. The proposed charts can be investigated in 
the future by including measurement errors. It can help the practitioner obtain more accurate 
results when implementing the proposed charts in real-life manufacturing, healthcare, 
service, and finance processes.

 
ACKNOWLEDGMENT

The Universiti Sains Malaysia supports this work, Short Term Grant [Grant Number: 304 / 
PKOMP / 6315616], with the project entitled “New Coefficient of Variation Control Charts 
based on Variable Charting Statistics in Industry 4.0 for the Quality Smart Manufacturing 
and Services.”

REFERENCES
Adegoke, N. A., Dawod, A., Adeoti, O. A., Sanusi, R. A. & Abbasi, S. A. (2022). Monitoring the multivariate 

coefficient of variation for high dimensional processes. Quality and Reliability Engineering International, 
38(5), 2606-2621. https://doi.org/10.1002/qre.3094

Alharbi, S., Raun, W. R., Arnall, D. B., & Zhang, H. (2019). Prediction of maize (Zea mays L.) population 
using normalized-difference vegetative index (NDVI) and coefficient of variation (CV). Journal of Plant 
Nutrition, 42, 673-679. https://doi.org/10.1080/01904167.2019.1568465

Calzada, M. E., & Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. Journal 
of Statistical Computation and Simulation, 83, 853-867. https://doi.org/10.1080/00949655.2011.639772

Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, P. (2013). Monitoring the coefficient of variation 
using control charts with run rules. Quality Technology & Quantitative Management, 10, 75-94. https://
doi.org/10.1080/16843703.2013.11673309

Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, P. (2015). Monitoring the coefficient of variation 
using a variable sample size control chart. The International Journal of Advanced Manufacturing 
Technology, 80, 1561-1576. https://doi.org/10.1007/s00170-015-7084-4

Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the coefficient of variation using EWMA charts. 
Journal of Quality Technology, 43, 249-265. https://doi.org/10.1080/00224065.2011.11917861

Chakraborti, S. (2007). Run-length distribution and percentiles: The Shewhart chart with unknown 
parameters. Quality Engineering, 19, 119-127. https://doi.org/10.1080/08982110701276653



Pertanika J. Sci. & Technol. 31 (1): 615 - 632 (2023)630

XinYing Chew

Chanda, S., Kanke, Y., Dalen, M., Hoy, J., & Tubana, B. (2018). Coefficient of variation from vegetarian index 
for sugarcane population and stalk evaluation. Agrosystems, Geosciences & Environment, 1, 1-9. https://
doi.org/10.2134/age2018.07.0016

Chew, M. H., Yeong, W. C., Talib, M. A., Lim, S. L., & Khaw, K. W. (2021). Evaluating the steady-state 
performance of the synthetic coefficient of variation chart. Pertanika Journal of Science and Technology, 
29(3), 2149-2173. https://doi.org/10.47836/pjst.29.3.20

Chew, X. Y., Khaw, K. W., & Yeong, W. C. (2020). The efficiency of run rules schemes for the multivariate 
coefficient of variation: A Markov chain approach. Journal of Applied Statistics, 47, 460-480. https://doi.
org/10.1080/02664763.2019.1643296

Chew, X. Y., Khoo, M. B. C., Khaw, K. W., Yeong, W. C., & Chong, Z. L. (2019). A proposed variable parameter 
control chart for monitoring the multivariate coefficient of variation. Quality and Reliability Engineering 
International, 35, 2442-2461. https://doi.org/10.1002/qre.2536

Doughty, M. J., & Aakre, B. M. (2008). Further analysis of assessments of the coefficient of variation of 
corneal endothelial cell areas from specular microscopic images. Clinical and Experimental Optometry, 
91, 438-446. https://doi.org/10.1111/j.1444-0938.2008.00281.x

Gan, F. F. (1993). An optimal design of EWMA control charts based on median run length. Journal of Statistical 
Computation and Simulation, 45, 169-184. https://doi.org/10.1080/00949659308811479

Giner-Bosch, V., Tran, K. P., Castagliola, P., & Khoo, M. B. C. (2019). An EWMA control chart for the 
multivariate coefficient of variation. Quality and Reliability Engineering International, 35, 1515-1541. 
https://doi.org/10.1002/qre.2459

Huang, C. C., & Tang, T. (2007). Development of a new infrared device for monitoring the coefficient of 
variation in yarns. Journal of Applied Polymer Science, 106, 2342-2349. https://doi.org/10.1002/app.25441

Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A control chart for the coefficient of variation. 
Journal of Quality Technology, 39, 151-158. https://doi.org/10.1080/00224065.2007.11917682

Khatun, M., Khoo, M. B. C., Lee, M. H., & Castagliola, P. (2019). One-sided control charts for monitoring 
the coefficient of variation in short production runs. Transactions of the Institute of Measurement and 
Control, 41, 1712-1728. https://doi.org/10.1177%2F0142331218789481

Khaw, K. W., & Chew, X. Y. (2019). A re-evaluation of the run rules control charts for monitoring the coefficient 
of variation. Statistics, Optimization & Information Computing, 7, 716-730. https://doi.org/10.19139/
soic-2310-5070-717

Khaw, K. W., Chew, X. Y., Lee, M. H., & Yeong, W. C. (2021). An optimal adaptive variable sample size 
scheme for the multivariate coefficient of variation. Statistics, Optimization & Information Computing, 
9, 681-693. https://doi.org/10.19139/soic-2310-5070-996

Khaw, K. W., Chew, X. Y., Yeong, W. C., & Lim, S. L. (2019). Optimal design of the synthetic control chart for 
monitoring the multivariate coefficient of variation. Chemometrics and Intelligent Laboratory Systems, 
186, 33-40. https://doi.org/10.1016/j.chemolab.2019.02.001

Khaw, K. W., Khoo, M. B. C., Castagliola, P., & Rahim, M. A. (2018). New adaptive control charts for 
monitoring the multivariate coefficient of variation. Computers & Industrial Engineering, 126, 595-610. 
https://doi.org/10.1016/j.cie.2018.10.016



Pertanika J. Sci. & Technol. 31 (1): 615 - 632 (2023) 631

Alternative Design of One-Sided Shewhart MCV Charts

Khaw, K. W., Khoo, M. B. C., Yeong, W. C., & Wu, Z. (2017). Monitoring the coefficient of variation using a 
variable sample size and sampling interval control chart. Communications in Statistics - Simulation and 
Computation, 46, 5772-5794. https://doi.org/10.1080/03610918.2016.1177074

Khoo, M. B. C., Wong, V. H., Wu, Z., & Castagliola, P. (2012). Optimal design of the synthetic chart for the 
process mean based on median run length. IIE Transactions, 44, 765-779. https://doi.org/10.1080/0740
817X.2011.609526

Lee, M. H., Lim, V. Y. C., Chew, X. Y., Lau, M. F., Yakub, S., & Then, P. H. H. (2020). Design of the synthetic 
multivariate coefficient of variation chart based on the median run length. Advances in Mathematics: 
Scientific Journal, 9, 7397-7406. https://doi.org/10.37418/amsj.9.9.86

Lim, S. L., Yeong, W. C., Khoo, M. B. C., Chong, Z. L., & Khaw, K. W. (2019). An alternative design for the 
variable sample size coefficient of variation chart based on the median run length and expected median 
run length. International Journal of Industrial Engineering: Theory, Applications, and Practice, 26, 199-
220. https://doi.org/10.23055/ijietap.2019.26.2.4085

Mahmood, T., & Abbasi, S. A. (2021). Efficient monitoring the coefficient of variation with an application to 
chemical reactor process. Quality and Reliability Engineering International, 37, 1135-1149. https://doi.
org/10.1002/qre.2785

Mim, F. N., Saha, S., Khoo, M. B. C., & Khatun, M. (2019). A side-sensitive modified group runs control chart 
with auxiliary information to detect process mean shifts. Pertanika Journal of Science and Technology, 
27(2), 847-866. 

 Mo, Y., Ma, X., Lu, J., Shen, Y., Wang, Y., Zhang, L., Lu, W., Zhu, W., Bao, Y., & Zhou, J. (2021). Defining 
the target value of the coefficient of variation by continuous glucose monitoring in Chinese people with 
diabetes. Journal of Diabetes Investigation, 12, 1025-1034. https://dx.doi.org/10.1111%2Fjdi.13453

Montgomery, D. C. (2013). Statistical quality control: A modern introduction. John Wiley & Sons, Inc.

Ng, W. C., Khoo, M. B. C., Chong, Z. L., & Lee, M. H. (2022). Economic and economic-statistical designs 
of multivariate coefficient of variation chart. REVSTAT-Statistical Journal, 20, 117-134. https://doi.
org/10.57805/revstat.v20i1.366

Nguyen, Q. T., Tran, K. P., Heuchenne, H. L., Nguyen, T. H., & Nguyen, H. D. (2019). Variable sampling 
Interval Shewhart control charts for monitoring the multivariate coefficient of variation. Applied Stochastics 
Models in Business and Industry, 35, 1253-1268. https://doi.org/10.1002/asmb.2472

Shriberg, L. D., Green, J. R., Campbell, T. F., Mcsweeny, J. L., & Scheer, A. R. (2003). A dianogstic marker 
for childhood apraxia of speech: The coefficient of variation ratio. Clinical Linguistic & Phonetics, 17, 
575-595. https://doi.org/10.1080/0269920031000138141

Teoh, W. L., Chong, J. K., Khoo, M. B. C., Castagliola, P., & Yeong, W. C. (2017). Optimal designs of the 
variable sample size chart based on median run length and expected median run length. Quality and 
Reliability Engineering International, 33, 121-134. https://doi.org/10.1002/qre.1994

Tran, P. H., & Tran, K. P. (2016). The efficiency of CUSUM schemes for monitoring the coefficient of variation. 
Applied Stochastic Models in Business and Industry, 32, 870-881. https://doi.org/10.1002/asmb.2213



Pertanika J. Sci. & Technol. 31 (1): 615 - 632 (2023)632

XinYing Chew

Voinov, V. G., & Nikulin, M. S. (1996). Unbiased estimator and their applications, multivariate case (2nd 
Ed.). Kluwer Publishing.

Wijsman, R. A. (1957). Random orthogonal transformations and their use in some classical distribution problems 
in multivariate analysis. The Annals of Mathematical Statistics, 28, 415-423. https://doi.org/10.1214/
AOMS%2F1177706969

Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2016). A control chart for the multivariate 
coefficient of variation. Quality and Reliability Engineering International, 32, 1213-1225. https://doi.
org/10.1002/qre.1828

Yeong, W. C., Lee, P. Y., Lim, S. L., Ng, P. S., & Khaw, K. W. (2021). Optimal designs of the side sensitive 
synthetic chart for the coefficient of variation based on median run length and expected median run length. 
PLoS ONE, 16, Article e0255366. https://doi.org/10.1371/journal.pone.0255366

Yeong, W. C., Lim, S. L., Khoo, M. B. C., & Castagliola, P. (2018). Monitoring the coefficient of variation 
using a variable parameter chart. Quality Engineering, 30, 212-235. https://doi.org/10.1080/08982112.
2017.1310230

Yeong, W. C., Tan, Y. Y., Lim, S. L., Khaw, K. W., & Khoo, M. B. C. (2022). A variable sample size run sum 
coefficient of variation chart. Quality and Reliability Engineering International, 38, 1869-1885. https://
doi.org/10.1002/qre.3057

Zhang, J., Li, Z., Chen, B., & Wang, Z. (2014). A new exponentially weighted moving average control chart 
for monitoring the coefficient of variation. Computers & Industrial Engineering, 78, 205-212. https://
doi.org/10.1016/j.cie.2014.09.027

Zhou, Q., Zou, C., Wang, Z., & Jiang, W. (2012). Likelihood-based EWMA charts for monitoring Poisson 
count data with time-varying sample sizes. Journal of the American Statistical Association, 107, 1049-
1062. https://doi.org/10.1080/01621459.2012.682811


